Algebra Tutorials!
Friday 13th of September
 Home Exponential Decay Negative Exponents Multiplying and Dividing Fractions 4 Evaluating Expressions Involving Fractions The Cartesian Coordinate System Adding and Subtracting Fractions with Like Denominators Solving Absolute Value Inequalities Multiplying Special Polynomials FOIL Method Inequalities Solving Systems of Equations by Graphing Graphing Compound Inequalities Solving Quadratic Equations by Completing the Square Addition Property of Equality Square Roots Adding and Subtracting Fractions The Distance Formula Graphing Logarithmic Functions Fractions Dividing Mixed Numbers Evaluating Polynomials Power of a Product Property of Exponents Terminology of Algebraic Expressions Adding and Subtracting Rational Expressions with Identical Denominators Solving Exponential Equations Factoring The Difference of 2 Squares Changing Fractions to Decimals Solving Linear Equations Using Patterns to Multiply Two Binomials Completing the Square Roots of Complex Numbers Methods for Solving Quadratic Equations Conics in Standard Form Solving Quadratic Equations by Using the Quadratic Formula Simplifying Fractions 2 Exponential Notation Exponential Growth The Cartesian Plane Graphing Linear Functions The Slope of a Line Finding Cube Roots of Large Numbers Rotating Axes Common Mistakes With Percents Solving an Equation That Contains a Square Root Rational Equations Properties of Common Logs Composition of Functions Using Percent Equations Solving Inequalities Properties of Exponents Graphing Quadratic Functions Factoring a Polynomial by Finding the GCF The Rectangular Coordinate System Adding and Subtracting Fractions Multiplying and Dividing Rational Expressions Improper Fractions and Mixed Numbers Properties of Exponents Complex Solutions of Quadratic Equations Solving Nonlinear Equations by Factoring Solving Quadratic Equations by Factoring Least Common Multiples http: Solving Exponential Equations Solving Linear Equations Multiplication Property of Equality Multiplying Mixed Numbers Multiplying Fractions Reducing a Rational Expression to Lowest Terms Literal Numbers Factoring Trinomials Logarithmic Functions Adding Fractions with Unlike Denominators Simplifying Square Roots Adding Fractions Equations Quadratic in Form Dividing Rational Expressions Slopes of Parallel Lines Simplifying Cube Roots That Contain Variables Functions and Graphs Complex Numbers Multiplying and Dividing Fractions 1 Composition of Functions Intercepts of a Line Powers http: Multiplying Two Numbers with the same Tens Digit and whose Ones Digits add up to 10 Factoring Trinomials Exponents and Polynomials Decimals and their Equivalent Fractions Negative Integer Exponents Adding and Subtracting Mixed Numbers Solving Quadratic Equations Theorem of Pythagoras Equations 1 Subtracting Fractions Solving Quadratic Equations by Graphing Evaluating Polynomials Slope Angles and Degree Measure
Try the Free Math Solver or Scroll down to Tutorials!

 Depdendent Variable

 Number of equations to solve: 23456789
 Equ. #1:
 Equ. #2:

 Equ. #3:

 Equ. #4:

 Equ. #5:

 Equ. #6:

 Equ. #7:

 Equ. #8:

 Equ. #9:

 Solve for:

 Dependent Variable

 Number of inequalities to solve: 23456789
 Ineq. #1:
 Ineq. #2:

 Ineq. #3:

 Ineq. #4:

 Ineq. #5:

 Ineq. #6:

 Ineq. #7:

 Ineq. #8:

 Ineq. #9:

 Solve for:

 Please use this form if you would like to have this math solver on your website, free of charge. Name: Email: Your Website: Msg:

# Terminology of Algebraic Expressions

In this note we give brief descriptions and illustrations of some names of things encountered in algebra.

An algebraic expression is a sequence of numbers and literal symbols together with arithmetic operation symbols and perhaps pairs of brackets. When the literal symbols are replaced by actual numbers, it should be possible to reduce the resulting numerical expression to a single numerical value.

Examples of algebraic expressions are:

• 3x + 5y = 7
• 6(x - 5) 2 + 24x
• 6x 3 + 5x 2 - 8x + 7
• (3x 2 + 7x - 1) 4

Algebraic expressions consist of one or more terms. The terms of the expression are the parts of the expression which are separated by ‘+’ or ‘-‘ signs.

Thus, the expression:

 3x + 5y = 7 has 3 terms 6(x - 5) 2 + 24x has 2 terms has 1 term 6x 3 + 5x 2 - 8x + 7 has 4 terms (3x 2 + 7x - 1) 4 has 1 term

Terms can be products of two or more factors. A product results when two or more quantities are multiplied together. The quantities being multiplied together to form a product are called its factors. Thus

• ‘3x’ is the product of two factors, ‘3’ and ‘x’; or ‘3’ and ‘x’ are the factors of the product ‘3x’
• ‘6x 2y’ is the product of three factors: ‘6’, ‘x 2’, and ‘y’

Of course, ‘x 2’ could itself be regarded as the product of two factors: ‘x’ and ’x’. In that case, 6x 2y becomes the product of four factors.

Often a term is a product of a constant or number and a part which is a literal symbol or a product or two or more literal symbols. The numerical factor is often referred to as the coefficient or numerical coefficient of the term. Thus

• the term ‘3x’ has the numerical coefficient ‘3’
• the term ‘6x 2 y’ has the numerical coefficient ‘6’,

etc.

The word coefficient is also used more generally to refer to a factor or group of factors in a term. Thus, for example, in the term 6x 2 y,

‘6x 2 ’ is the coefficient of ‘y’

and

‘y’ is the coefficient of ‘6x 2

Terms which have identical symbolic parts are said to be like terms. Logically, two terms with different symbolic parts would be called unlike terms. So

• 3x 2 y and 7x 2 y are like terms (the symbolic part in both cases is ‘x 2 y’)

but

• 3x 2 y and 7xy 2 are unlike terms, because the symbolic part of the first one is x 2 y, which is different from xy 2 , the symbolic part of the second one.

There are specific names for expressions which indicate how many terms they contain:

monomials are expressions with just one term

for example: 5, 6x 2y, 3x, 7xyz, etc. are monomials

binomials are expressions with two terms:

for example: x + y, 3x 2 – 4y, 5 + 2x, etc., are binomials

trinomials are expressions with 3 terms

for example

5x 2 + 2xy -3y 2 is a trinomial

is a trinomial

multinomials are expressions with several terms

polynomials are expressions with two or more terms in which the symbolic part of each term is a power of a single symbol (the same one in all terms). The degree of a polynomial is the highest power that it contains.

for example:

3x 2 + 2x + 5 is a polynomial of degree 2 (or, a polynomial of the second degree)

5x 7 + 3x 4 + 9x 3 - 7x 2 + 2 is a polynomial of degree 7.