Algebra Tutorials!
Friday 23rd of March
 Home Exponential Decay Negative Exponents Multiplying and Dividing Fractions 4 Evaluating Expressions Involving Fractions The Cartesian Coordinate System Adding and Subtracting Fractions with Like Denominators Solving Absolute Value Inequalities Multiplying Special Polynomials FOIL Method Inequalities Solving Systems of Equations by Graphing Graphing Compound Inequalities Solving Quadratic Equations by Completing the Square Addition Property of Equality Square Roots Adding and Subtracting Fractions The Distance Formula Graphing Logarithmic Functions Fractions Dividing Mixed Numbers Evaluating Polynomials Power of a Product Property of Exponents Terminology of Algebraic Expressions Adding and Subtracting Rational Expressions with Identical Denominators Solving Exponential Equations Factoring The Difference of 2 Squares Changing Fractions to Decimals Solving Linear Equations Using Patterns to Multiply Two Binomials Completing the Square Roots of Complex Numbers Methods for Solving Quadratic Equations Conics in Standard Form Solving Quadratic Equations by Using the Quadratic Formula Simplifying Fractions 2 Exponential Notation Exponential Growth The Cartesian Plane Graphing Linear Functions The Slope of a Line Finding Cube Roots of Large Numbers Rotating Axes Common Mistakes With Percents Solving an Equation That Contains a Square Root Rational Equations Properties of Common Logs Composition of Functions Using Percent Equations Solving Inequalities Properties of Exponents Graphing Quadratic Functions Factoring a Polynomial by Finding the GCF The Rectangular Coordinate System Adding and Subtracting Fractions Multiplying and Dividing Rational Expressions Improper Fractions and Mixed Numbers Properties of Exponents Complex Solutions of Quadratic Equations Solving Nonlinear Equations by Factoring Solving Quadratic Equations by Factoring Least Common Multiples http: Solving Exponential Equations Solving Linear Equations Multiplication Property of Equality Multiplying Mixed Numbers Multiplying Fractions Reducing a Rational Expression to Lowest Terms Literal Numbers Factoring Trinomials Logarithmic Functions Adding Fractions with Unlike Denominators Simplifying Square Roots Adding Fractions Equations Quadratic in Form Dividing Rational Expressions Slopes of Parallel Lines Simplifying Cube Roots That Contain Variables Functions and Graphs Complex Numbers Multiplying and Dividing Fractions 1 Composition of Functions Intercepts of a Line Powers http: Multiplying Two Numbers with the same Tens Digit and whose Ones Digits add up to 10 Factoring Trinomials Exponents and Polynomials Decimals and their Equivalent Fractions Negative Integer Exponents Adding and Subtracting Mixed Numbers Solving Quadratic Equations Theorem of Pythagoras Equations 1 Subtracting Fractions Solving Quadratic Equations by Graphing Evaluating Polynomials Slope Angles and Degree Measure
Try the Free Math Solver or Scroll down to Tutorials!

 Depdendent Variable

 Number of equations to solve: 23456789
 Equ. #1:
 Equ. #2:

 Equ. #3:

 Equ. #4:

 Equ. #5:

 Equ. #6:

 Equ. #7:

 Equ. #8:

 Equ. #9:

 Solve for:

 Dependent Variable

 Number of inequalities to solve: 23456789
 Ineq. #1:
 Ineq. #2:

 Ineq. #3:

 Ineq. #4:

 Ineq. #5:

 Ineq. #6:

 Ineq. #7:

 Ineq. #8:

 Ineq. #9:

 Solve for:

 Please use this form if you would like to have this math solver on your website, free of charge. Name: Email: Your Website: Msg:

# Inequalities

## Rules for Inequalities

The section following this one will deal with the solution of inequalities. As with the solution of equations, there are certain rules that may be used. In the case of inequalities these are

Rule 1 An equal quantity may be added to, (or subtracted from) both sides of an inequality without changing the inequality.

Rule 2 An equal positive quantity may multiply (or divide) both sides of an inequality without changing the inequality.

Rule 3 If both sides of an inequality are multiplied (or divided) by a negative quantity then the inequality is reversed .

N.B. It is very important to be careful with the last rule.

Before looking at the solution of inequalities it is useful to see why the above rules hold. This is done in the following example.

Example 1

Given the (true) inequality 4 > - 1, verify each of the rules

(a) by adding 3 to both sides,

(b) by subtracting 3 from both sides,

(c) by multiplying both sides by 3,

(d) by multiplying both sides by - 3.

Solution

(a) Adding 3 to both sides gives 7 > 2, which is also true.

(b) Subtracting 3 from both sides gives 4 - 3 > - 1 - 3 or 1 > - 4, which is also true.

(c) Multiplying both sides by 3 gives 12 > -3, which is also true.

(d) Multiplying the inequality 4 > -1 by -3 gives. according to rule 3,

4 Ã— (-3) < (-1) Ã—(-3), or -12 < 3, which is correct.

## Solving Inequalities

Example 2

Solve the following inequalities.

(a) x - 3 > 5, (b) 2x - 1 > 7, (c) 3 - 2x > -5.

Solution

(a) x - 3 > 5, add 3 to both sides

x - 3 + 3 > 5 + 3,

x > 8 .

(b) 2x - 1 > 7 , add 1 to both sides

2x > 8 , divide both sides by 2,

x > 4.

(c) 3 - 2x > -5, subtract 3 from both sides

-2x > -8 , divide both sides by - 2

x < 4, rule 3 has reversed the inequality!

Here are some exercises on solving inequalities.

Exercise

Solve each of the following inequalities using the rules given in section 2.

Solutions

(a)

3x - 4 < 5

3x - 4 + 4 < 5 + 4

3x < 9

x < 3.

(b)

x + 1 < 0

x + 1 - 1 < 0 - 1

x < - 1

(c)

2x - 6 10

2x - 6 + 6 10 + 6

2x 16

x 8

(d)

2x x - 3 substract x from both sides

2x - x x - 3 - x

x - 3

(e)

3x + 1 < 2x + 5

3x + 1 - 1 < 2x + 5 - 1

3x < 2x + 4

3x - 2x < 2x + 4 - 2x

x < 4

(d) In this case the brackets must first be removed using the standard rules.

3(x - 1) > 2(1 - x)

3x - 3 > 2 - 2x

3x - 3 + 3 > 2 - 2x + 3

3x > 5 + 2x

3x - 2x > 5 + 2x - 2x

x > 5

Now try this short quiz.

Quiz

Which of the following is the solution to the inequality 15 - x > 7 + x ?

(a) x > 4, (b) x > 11, (c) x

Solution

The solution is as follows.

15 - x > 7 + x

15 - x + x > 7 + x + x

15 > 7 + 2 x

15 - 7 > 7 + 2 x - 7

8 > 2 x

4 > x or equivalently

x < 4

The first step in this solution was adding x to both sides so that (the positive) 2x appears on the right. This meant that the subsequent division was by the positive number 2. Division by positive numbers is always preferable as it generally leads to fewer mistakes.